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On the  Linearization of Volterra In t eg ra l  Equations -- - 

I. Introduction. 

Given a nonlinear d i f f e ren t i a l  equation 

. (1) X' = CX + ~ ( I X I ) ,  (' = d/dt)  

it i s  well  known t h a t  t he  asymptotic s t a b i l i t y  of t he  l i n e a r  system 

yf = Cy implies the  l o c a l  asymptotic s t a b i l i t y  of t h e  t r i v i a l  solu- 

t i o n  of (1). All known proofs of t h i s  f a c t  depend on the  f a c t  t h a t  

solut ions of t he  l i n e a r  system decay exponentially o r  the  equivalent 

fact  t h a t  there  e x i s t s  a quadratic Lyapunov function f o r  t h e  l i n e a r  

system. 

Consider a system of n equations of t he  form 

t 
x ( t )  = f ( t )  + J a( t - s )g(x(s ) )ds ,  t 2 0 

0 
( 2  1 

where x,f and g a re  n-vectors, a ( t )  i s  an n x n matrix and 

g(0 )  = 0. If f i s  ' f s m a l l f f  t h i s  system i s  of ten replaced by t h e  

more eas i ly  analyzed l i n e a r  system 

where J 

Levin and Nohel have proved by example t h a t  solut ions of equations 

of t he  form (3) need not decay exponentially, c . f .  [l, p.333, l i n e  

(2.11)]. 

t h a t  solutions of t h e  l i n e a r  system ( 3 )  approximate those of  (2) i n  

i s  the  Jacobian matrix g' (0) = (dgi(0)/aj) .  However 

Therefore it has not been possible  up t o  now t o  show 

an appropriate. sense, except i n  the  case where solut ions of (3) 

decay exponentially . 
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Nohel [g,lO] has pointed out t h i s  gap i n  the  theory of Volterra 

i n t e g r a l  equations. 

i za t ion  can be developed when solut ions of (3) do not behave l i k e  solu- 

He  has asked whether or not a theory of l i nea r -  

t i ons  of an ordinary d i f f e r e n t i a l  equation. The purpose of t h i s  paper i s  

t o  provide i n  sect ion I1 below a theory of l i nea r i za t ion  f o r  equations 

(2) under very general assumptions on 

our analysis i s  Theorem 1 of [2] which we use i n  place of t h e  usual  

a( t )J .  The e s sen t i a l  t o o l  i n  

estimates from ordinary d i f f e r e n t i a l  equations. 
. __. 

The advantage of our method i s  t h a t  one can replace the  

loca l ,  nonlinear problem (2) by the  l i n e a r  equatlon ( 3 )  and the  

l i n e a r  equation f o r  i t s  resolvent. These l i n e a r  equations may be 

s tudied using known methods such as transform techniques. In  

Sections 111, I V  and V below we give some examples which i l l u s t r a t e  

t h i s .  

I n  t h e  sequel we s h a l l  need the  following notat ions and 

conventions. Let R" denote real  n-space with a norm 1x1. Let 

ID1 denote the  corresponding matrix norm. Let BC[O,w) be the  

space of bounded continuous functions on 0 5 t < 03 with norm 

Similarly BC(R) w i l l  be the  space of bounded continuous functions 

on -03 < t < m with norm 

-00 < t < m). 

11. General S t a b i l i t y  Conditions. 

Concerning equation (2) we assume: 
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1 
( A l )  a E LL(O,t)  f o r  each t > 0, 

(A2) f ( t )  BC[o>w)J 

(A4) the  Jacobian matrix J i s  nonsingular. 

Since we assume J i s  nonsingular, it i s  no loss  of gen- 

e r a l i t y  t o  assume J i s  the  n x n i d e n t i t y  matrix I. We need 

only replace a ( t )  by a ( t ) J  and g(x) by J-'g(x). Thus equa- 

t i o n  (3) may be rewri t ten i n  the form 

It i s  wel l  known t h a t  the unique solut ion of equation ( 3 ' )  

has the form 

t 
y ( t )  = f(t)  - J b ( t - s ) f ( s )ds ,  (t Z 0 )  

0 
(4) 

where the matrix b i s  the  resolvent kernel  determined by the 

matrix equation 

t 
b ( t )  = - a ( t )  + J b ( t - s ) a ( s )ds .  

0 
(5  1 

We assume t h a t  

(A>) the  matrix b determined by (3) e x i s t s  f o r  a l l  

1 t > 0 and Ib ( t ) l  E L ( 0 , ~ ) .  

Theorem 1. I f  assumptions (Al->) a re  s a t i s f i e d  then there  e x i s t s  - - -- 
E > 0 and cl > 0 such tha t  when the solut ion y ( t )  of ( 3 ' )  - ---- 0 
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1 .Proof. Since b E L ( 0 , ~ )  it follows t h a t  equation (2) i s  equiva- 

l e n t  t o  the  system 

where y i s  defined by l i n e  (4) and 

Pick cl > 0 such tha t  i f  1x1 5 el, then 

00 

21G(x)I J I b ( s ) l d s S  1.1, 
0 

03 

and 1 Ib(s) ldslg ' (x)  - 11 < 1. Pick eo = c1/2. Let Tx(t) be 

the function defined by the r ight  hand s ide  of equation (6). Let 
0 

Our estimates on E and cl imply t h a t  T i s  a contradiction 

map on S(0,c1). This proves Theorem 1. 
0 

Corollary 1. 

and > 0 such t h a t  when I I f I I  5 e2 t he  solut ion x ( t )  of 

(2) e x i s t s  f o r  a l l  t 2 o and s a t i s f i e s  llxllo 5 cl. 

If ( A l - 3 )  are  sat isf ied,  then there  e x i s t  cl > 0 - - --- 

--- - - 0 - 
-- - 

Proof. Pick E ~ .  such t h a t  



5 -  

where E i s  the  constant given i n  Theorem 1 

above implies llyllo 5 co. Thus Corollary 1 

above. 

1. Then equation (4) 

follows from Theorem 1 

Theorem 2. Let (Al-3) hold and l e t  eo and cl be given by 

Theorem 1 above. If llyll, 5 c0 

- --- - --- 
and y ( t )  + O  as  t +Q), then - - - -  

x ( t )  + O  as t +a. - 

Proof. Let r be the posi t ive l i m i t  s e t  of the  solut ion x ( t ) ,  

t h a t  i s  r i s  the smallest  s e t  such t h a t  x ( t )  tends t o  r as 

t +m. Since x ( t )  i s  bounded it i s  e a s i l y  shown t h a t  i s  

nonempty, compact and connected. 

Since x ( t )  solves equation (6), y ( t )  + 0 and b E: L 1 (0,a) 

it follows from Theorem 1 of [2] t h a t  i s  the  union of solu- 

t i ons  of 

(7.1) 
t 

z ( t )  = - b(t-s)G(z(s))ds ,  
--03 

Let Tz( t )  be the function defined by the r i g h t  hand s ide 

of l i n e  (7.1) when z E: BC(--a),m) and 1 1 ~ 1 1 ~  P el. The estimates 

i n  the  proof of Theorem 1 above imply t h a t  T i s  a contract ion 

map. Thus z ( t )  0 i s  the  unique so lu t ion  of (7.1-2). This 

means t h a t  I' = EO). Thus x ( t )  4 0  and the  proof of Theorem 2 

i s  complete. 

Using Corollary 1 and Theorem 2 we obtain the  following 

r e s u l t .  
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be given by €2 -_.__- 
Corollary 2. Let ( A l - 3 )  hold and l e t  c1 and 

Corollary 1 above. If l l f l l o  S e2 y ( t )  -+ 0 as  t + CQ, then 

--- - - 
- - 

x ( t )  4 0 .  

111. Applications: Integrable Kernels. 

The 

Section I1 

s h a l l  need 

Theorem 3 

purpose of t h i s  section i s  t o  apply the  theory i n  

with the  addi t ional  assumption t h a t  a E: L (0,m). We 

t h e  following result. 

1 

1 (Paley and Wiener). Let a E L ( 0 , ~ ) .  Then the  s o h -  - --- 
t i o n  b of equation (3) i s  Ll(0,m) i f  and only i f  the  determinant ----- - - 

03 

det  (I-! exp ( - s t ) a ( t )d t )  # 0, 
0 

(8 )  

i n  the  r i g h t  ha l f  plane Res L 0. ----- 
This theorem i s  proved by a t r i v i a l  modification of t he  

proof of Paley and Wiener of Theorem X V I I I  i n  [ 3 ,  p. 601. Paley 

and Wiener use Theorem 3 t o  study the  asymptotic behavior of s o h -  

t i ons  of equation (3' ) i n  case f ( t )  + o as t + 03. Their re- 

s u l t  has the  following nonlinear generalization. 

Theorem 4 .  Suppose (Al -4 )  hold (8) i s  s a t i s f i e d  f o r  Res h 0 
-9 - - 

is given by Corollary 1 above. I f  IIfllo 6 c2 and - -  - and 

f( t)  3 0 as t 3 03, then x ( t )  3 0. 

- €2 --- 

- - 

Proof. 

(4).  Since f( t)  -3 0 as t -+ w and b E: L (O,m), the  Lebesgue 

Dominated Convergence Theorem implies t h a t  y ( t )  + O .  An 

The solut ion of the  l inear ized  equation ( 3 1 )  i s  given by 

1 
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appl icat ion of Corollary 2 completes the  proof of Theorem 4. 

Levin [4] has obtained another nonlinear general izat ion of 

t h e  Paley-Wiener r e su l t .  His r e s u l t  i s  ne i ther  stronger nor weaker 

than Theorem 4 above. Levin s tudies  a sca l a r  equation ( n d )  

while we allow n > 1. O u r  hypothesis on a ( t )  i s  weaker than 

Levin's and our hypothesis on g(x) stronger.  Theorem 3 i s  a 

l o c a l  r e s u l t  while Levin's r e s u l t  i s  global.  

The condition f ( t )  4 0  i s  e s s e n t i a l  t o  t he  proof of 

Theorem 4 above. If f has a d i f f e ren t  type of asymptotic be- 

havior, it may' s t i l l  be possible t o  analyze t h e  l o c a l  behavior of 

solut ions of equation (2). f ( t )  For example i n  Theorem 5 below, 

i s  constant but  not necessarily zero. 

IV .  Applications: In tegrodi f fe ren t ia l  Equations. 

The purpose of this section i s  t o  apply the  theory of 

Section I1 t o  the  study of the l o c a l  behavior of i n t eg rod i f f e ren t i a l  

equations of the  form 

where k i s  l o c a l l y  integrable  and. m i s  a constant. We allow 

m = 0. 

one s e t s  f ( t )  F x and 

This system can be wri t ten i n  the  form of equation (2) i f  

0 

t 
a( t )  = m + k(s)ds .  

0 

We wish t o  invest igate  t h e  asymptotic behavior of solut ions 



of equation (9 )  when xo i s  small. We remark t h a t  the de f in i t i ons  

of s t a b i l i t y  and asymptotic s t a b i l i t y  of the  t r i v i a l  solut ion 

x = 0 of ( 9 )  are  the  same as f o r  ordinary d i f f e r e n t i a l  equations. 

Theorem 5.  Let f and a be as defined above. If (A3-4) -> hold 

a E L (0,co) and (8) --- i s  t r u e  fo r  Res 2: 0, -- then f o r  xo s u f f i -  

- - -- - -  
1 - 

c i e n t l y  small 

(i) 

(ii) 

the  t r i v i a l  solution of ( 9 )  i s  s tab le  and 

each solut ion of ( 9 )  tends t o  a constant as 

- - - - 
t -+ 03. - --- - 

Proof. It follows from the proof of Corollary 1 above t h a t  f o r  

each E, 0 < E < E ~ ,  there  ex i s t s  6 > 0 such t h a t  llxllo 5 E 

when IxoI 5 6. 

To prove p a r t  (ii) note t h a t  if lxol S c2 then [ x ( t ) l  5 el 

f o r  all t B 0. Moreover 

I Since b E L (o,~), 

e x i s t s .  By Theorem 1 of [ 2 ]  the  pos i t ive  l i m i t  s e t  of x ( t )  i s  

the  union of solut ions of 

00 t 
(10.1) Z ( t )  = (I-! b(s)dS)Xo - J b(t-S)G(z(S))dS, 

0 -co 

Let S(0,c1) be the closed sphere i n  BC(R) with center  

a t  the or ig in  and radius  E Let So be the  subset of S(0,c1) 1' 
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consis t ing of constant functions. The estimates on E i n  t he  

proof of Theorem 1 imply t h a t  the  r i g h t  s ide of (10.1) defines a 

1 

contract ion map on S(0,e1) and on So. Therefore t h e  unique 

so lu t ion  of (10.1-2) i s  a constant function 

pos i t ive  l i m i t  s e t  of x ( t )  i s  the  s ing le  point  z 0’ x ( t )  + zo 

as t + w, and Theorem 5 i s  proved. 

z ( t )  z 0’ ‘Thus the  

For xo s m a l l ,  the  l i m i t  zo i s  obtained by solving the  

equation 

00 00 

z = (I-J b(s)ds)xo - (J b(s)ds)G(zo). 
0 

0 
0 

L e t  t he  solut ion be zo = F(xo). Then F(0) = 0 and F maps a 

neighborhood of xo = 0 diffeomorphical lymto a neighborhood of 

z = 0. 

c a l l y  s tab le .  

This means t h a t  the  t r i v i a l  so lu t ion  cannot be asymptoti- 
0 

V. Applications: A Reactor Problem. 

The dynamic behavior of a continuous medium nuclear reac tor  

can be described, under cer ta in  simplifying assumptions, by the  

following in tegrodi f fe ren t ia l  equations f o r  theunknown u and T: 

(11.1) 

with the  i n i t i a l  conditions 

These equations have been extensively s tudied by Levin and 

Nohel, i n  t h e  l i n e a r  case g(u) = u c.f. [1,5] and i n  t h e  nonlinear 
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case zf. [6j. IE t he  reactor  problem g(u) = exp(u) - 1. 

We wish t o  study the  asymptotic behavior of solut ions of 

(11) using the  theory of Section 11. Our analysis  depends heavi ly  

on the  papers [l,?, and 61 both f o r  motivation and techniques. 

Since Levin and Nohel have t rea ted  the  uniqueness problem f o r  (11- 

12) we do not consider it further.  

Let * denote the  L2 Fourier transform. If f,a, and 71 

a r e  L2(R), then an elementary appl icat ion of transform theory 

shows t h a t  u ( t )  s a t i s f i e s  the equation 

t 
u ' ( t )  = -1 ml(t-s)g(u(s))ds - m2(t),u(0) = uo 

0 
(13) 

where f o r  j = 1,2. 

Using a Taubiswn theorem Levin and Nohel [l] study the  l i n e a r  equa- 

t i o n  

t 
vr (t) = -J ml(t-s)v(s)ds - m,(t) ,v(O) = vo. 

0 
(14) 

They prove 

Theorem 6 (Levin and Nohel). Suppose f,a - m d  7 sa t i s fy :  
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Then the  solut ion v ( t )  of (14) ex i s t s  f o r  a l l  t B 0 and v ( t )  = -- - -- - 

Corollary 3 .  

exists a pos i t ive  constant 

t h a t  f o r  a l l  t 2 0 

If  the  hypotheses of Theorem 6 are  s a t i s f i e d  then there  -- - - -- 
K1 (independent of v and f )  such - 0 -  - 

--- 

Proof. Let v,(t) be the  solution of (14) when v = 1 and m 2 ( t )  E 0 

and l e t  v2( t )  be the  solution when v = 0. Then the  general  solut ion 

i s  vl(t)vo + v2( t ) .  By Theorem 6 v, (t) i s  bounded. 

0 

0 

Let V be t h e  

5.32 of [l] we see t h a t  

I 

Laplace transform of v2. Using l i n e s  5.28 and 

f o r  --CQ < y < 00 

w 0 J  

J exp(-(iy)1/21x-s,l )a(x)f(s)dxds 
-03 -co 

where H(y) i s  i n  LL(-mYco) and H depends only on a and 7. 

Lemmas 5.1-5.6 of [l] show t h a t  

of [8, p. 2661. Therefore 

V s a t i s f i e s  t he  hypotheses of Theorem 2 
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This proves Corollary 3. 

Using Theorem 2 and 6 we prove 

Theorem 7. Let f,a - and rj s a t i s f y  (A6-8). - Let g s a t i s f y  (A3) 

with gr (0) = 1. Then there  exis t  6 > 0 (depending only on qya 

and g) such t h a t  when IuoI 5 6 and ]If11 5 6, then the solution 

u(t)  of (13) ex i s t s  fo r  a l l  t 2 0 and u ( t )  0 as  t -+a. 

- 

- 
- - -- 

- -- - - 

Proof. Let b ( t )  be the  resolvent kernel f o r  equation (14), t h a t  

i s  b ( t )  solves (14) i n  the special  case v = 0 and f = q. By 

Theorem 6 we see t h a t  

0 

v ( t )  and b ( t )  = u(t -3/2) as t + w. Thus 
I b i s  i n  L ( 0 , ~ ) .  We know from Corollary 3 t h a t  Iv( t ) l  i s  s m a l l  

when 

the  proof of Theorem 7. 

IuoI and IIfll are  s m a l l .  An application of Theorem 2 completes 

Corollary 4. Let the hypotheses of Theorem 7 hold. If 6 i s  given -- - - -  -- - 
by - Theorem 7 - and IIfll, IuoI 5 6, - then u ( t ;  E L'(0,w). 

Proof. Fix uo and f with Iu0I and I I f l l  5 6. Let v ( t )  be the 

solut ion of (14). There ex is t s  K > 0 such t h a t  fo r  a l l  t 2 0 

I__ 

Ib( t ) l  5 K(t+l)-3/2,v(t)l 5 K ( t + l )  -3/2 . 

Since u ( t )  + 0, there  ex i s t s  T > 0 such t h a t  i f  t B T then 

Let K1 be a bound on G(u(t))l f o r  0 6 t < 03. For a l l  t B 0, 



T 
u(t+T) = v(t+T) - J b(t+T-s)g(u(s))ds 

0 

t 
- b(t-s)G(u(T+s))ds, 
0 

T 
Iu(t+T)I 5 K ( t + T + l )  -3/2 + KK, J ( t + T + l - ~ ) - ~ / ~ d s )  

0 
.J- 

t 
+ 1 K(t+1-~)-~/~1u(T+s)l/(4K)ds, 
0 

S K ( t + T + l )  -3/2 + 2KK1((t+l) - ( t+T+l )  

t 
+ ( t + l - ~ ) - ~ / ~ I  u(T+s) I /bds 

The comparison theorem of Nohel [7, Theorem 2.11 implies 

that for t h 0, lu(t+T)I 5 U ( t ) ,  where U solves 

t 
U ( t )  = H l ( t )  + H 2 ( t )  + 1 H3(t-s)U(s)ds. 

0 

Since fo r  any t > 0, 

t 
1 H2(s)ds = 4m1(=1 - 6 1  - 1 + 6 1 )  5 4KK1(&1 - l), 
0 

1 1 it follows t h a t  5 E: L ( 0 , ~ ) ) .  Clearly H1 and H E L (0,co) and 3 
Q) 

H3(s)ds 5 1/2. Thus the r i g h t  hand s ide of equation (13) determines 
0 
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a contraction map on L l ( 0 , ~ ) .  Since U ( t )  dominates I u(t+T) 1, 
u( t )  E. L ( 0 , ~ ) .  

1 This completes the  proof of Corollary 3 .  

I n  order t o  study the asymptotic behavior of T(x,t) we 

need the following addi t ional  assmption: 

(Ag) f, 7 E C (R) and 7 i s  loca l ly  Holder continuous. 

Theorem 8. Suppose g s a t i s f i e s  (A3) - and g ' ( 0 )  = 1. - Let f,a 

and 17 s a t i s f y  (~6-9) .  Then for  u and IIfll su f f i c i en t ly  s m a l l  
0 -  -- - 

problem (11-12) - -  has a unique solution u( t ) ,  T(x, t) .  Moreover, 

1 and u( t )  4 0  as t + c o  with - u c L ( 0 , ~ ) .  - - 

Proof. For uo and llfll suf f ic ien t ly  small Theorem 7 and Corollary 

3 imply the existence of  a solution of equation (13) such t h a t  u ( t )  
1 u E L ( 0 , ~ )  and u ( t )  -+ 0. Given t h i s  u ( t )  define T(x,t) on 

where G(x,t) = ( b ~ i - L ) - ~ / ~ e x p ( - x ~ / ( 4 t ) ) .  Using the  same proof as i n  

[7, p.2641 we ver i fy  t h a t  the p a i r  u(t),T(x, t) i s  a solution of (11) 

and (12). Moreover, f o r  any t > 0 

- W  -0 )  0 

1 Since g ( u ( t ) )  is L ( 0 , ~ )  it follows by dominated convergence t h a t  
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t t -1/2 
s-1/21g(u(t-s))Ids = f ( t-s)  Ig(u(s ) ) [  ds + 0. 

0 0 

Therefore T(x,t) 4 0  as t --)a uniformly f o r  -Q) < x < Q). This 

proves Theorem 8. 

Theorem 8 i s  neither stronger nor weaker than the r e s u l t s  

i n  [ 6 ] .  The advantage of Theorem 8 i s  t h a t  we avoid a hypothesis on 

the  interconnection of f,a and 7, c . f .  16, l i n e  1.161. The main 

disadvantage of Theorem 8 i s  tha t  the r e s u l t  i s  l o c a l  while the  re -  

sults of [6] a re  global. 
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